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1. INTRODUCTION

The basic mathematical model of the parametric adjustment expresses each of

the observables in terms of parameters, where the structure tying together the

two groups of variables Is in general nonlinear. The present study addresses

the resolution of such an adjustment problem through an isomorphic geometrical

setup with tensor structure and notations. The number of observables is denoted

by n and the number of parameters by u, where n>u for an adjustment to take

place. The indices identifying the elements in either group are written as

superscripts, conforming to tensor notations for coordinates. Thus, the

observables in the parametric model are represented by

r =rua (1)
x (U

where the Roman-letter and the Greek-letter indices vary respectively as

r = ,2, ... n; a = 1, 2..... u (2a,b)

The actual observations of x r(u a ) are in general inconsistent with the
a

parameters ua, giving rise to the discrepancies

dxr = r - r (ua )  (3)

Here and in the sequel, the symbol xr is reserved for the observations, while
r ar

the observables are represented by x (u ) or other symbols distinct from x

In a standard procedure, (1) is subject to the Taylor expansion
r axe/ a] adu d +.. , 4a

x r(u ) = xr + [i du + (1/2)[a2 x r/au auo dUadup + (4a)
00 0

dua = ua - ua , (4b)
0

where the tensor symbolism implies the summation convention over the dummy

(repeating) indices. The subscript "o" corresponds here to the initial values
a r= r aof the parameters, u , so that x ox (u ). Upon introducing the notation

dx , such that

dxr =r - x (5)

(3) in conjunction with (4a) form the nonlinear observation equations

dxr [ax r/aua J dua + (1/2)[a 2xr/aua au] duaduo + dx r  (6)
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The Gauss' form of a two-dimensional surface (u=2) embedded in a three-

dimensional flat space (n=3) is described, together with two other forms, in

Chapter 6 of [Hotine, 1969]. In [Blaha, 1984], which treated only the

linearized parametric adjustment, both the n-dimensional "observational" space

and the u-iimensional "model" surface were considered flat. The latter was thus

in reality a hyperplane. Although the model surface is now intrinsically a

curved space, the surrounding observational space can again be considered flat.

This stems from the representation of variance-covariance matrices by associated
metric tensors and of weight matrices by metric tensors as demonstrated in
[Blaha, 1984]. Since the variance-covariance and the weight matrices do not

change with the coordinates ua as discussed In the preceding paragraph, the
0

associated metric tensor grs and the metric tensor g for the observational
sr

space are constant, at least insofar as displacements along the model surface

are concerned. And in the absence of any conflicting information or

restriction, these tensors are assumed constant throughout the observational

space. The latter is thus flat as an admissible and tangible outcome.

In general, a flat space can be described via Cartesian coordinates. In a

Cartesian coordinate system, a given point is depicted by a set of coordinates
rx , r=1,2 .... n, which can be interpreted as its position vector (p) expressed

r rby contravariant components, p =x . Considered as a tensor, and thus as a point

function, p Is associated with this given point (and not, for example, with the

origin). Accordingly, If the observational-space coordinates were Cartesian,
r ra

x o X(u o ) would represent the position vector associated with the model-
0 0surface point called P. Similarly, (1) would express a family of position

vectors associated with the model surface. Any of these position vectors could

be freely parallel-transported to the point P and eventually give rise to tensor

equations there. Although derived in Cartesian coordinates, such equations

would be valid in any coordinates applicable to a flat space.

r r aIn multiplying the Cartesian coordinates x =x (u ) by the appropriate

transformation factors, one obtains the contravariant components of the same

family of position vectors in another coordinate system. Equation (1) can thus

be broadly interpreted as expressing a family of position vectors, whose

functional relationship to the coordinates ua depends in part on the above

transformation factors, i.e., on the observational-space coordinate system in

use. if the latter were completely general, the position vectors could not be

3



2. GEOMETRICAL RESOLUTION

2.1 Geometrical Setup

The geometrical setup corresponding to the nonlinear adjustment model is

schematically illustrated In Fig. 1. In accordance with the discussion in the

Introduction, the observations are interpreted as the contravariant components

of the position vector x r of the point denoted Q. The observables consistent

with the adjustment model correspond to a family of position vectors xr (u) to

r=) porto vetrtah onthe model surface. In particular, x xr (ua) identifies the position vector

to the point P. and xr ir(u (P)) identifies the position vector to the point

P. where the model-surface coordinates of P and P are ua and ua(p),0

respectively. The difference in the model-surface coordinates between P and P

is denoted by du , so that

dua = ua(P) -u a  (8)

0

In the course of the development, the model-surface point P Is considered

variable, and is restricted to a small neighborhood of the fixed point P.

Accordingly, the coordinate differences dua are variable. As two special cases,

P can coincide with P, or can coincide with the point denoted P in Fig. 1.

The differences In the observational-space coordinates between P and P

are denoted as

AXr  . - r , (9)

0

which also describes the differences in the contravariant components of the

position vectors belonging to two distinct points in space, namely P and P.

In general, unless these position vectors are parallel-transported to a common
r

point, (9) is not a tensor equation and Ax is not a tensor. However, in the

special observational-space coordinates with a constant metric tensor, either of

these vectors can be freely parallel-transported to any location. It is then

convenient to regard x as parallel--transported from P to P. in which case
r

(9) is a tensor equation at P and Ax is a tensor at P. This will allow

Ax r to participate in other tensor equations at P. The geometrical object

described by the contravariant components Ax can be symbolized by an arrow

from P to P, referred to as the vector PP. In Fig. 1, this vector is

denoted as Ax, and Its tip depicts one special location of the point P.

5
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The differences in the observational-space coordinates between Q and P are

denoted by I
dxr r - x (10)

or

which has already appeared as equation (5). In analogy to the above, dxr also

represents the differences In the contravariant components of the position

vectors belonging to Q and P, respectively. Since the position vector belonging

to Q can again be freely parallel-transported to P, (10) is a tensor equation at

P and dx r is a tensor at P. The geometrical object described by dx r is

symbolized in Fig. 1 by the vector dx. Similarly, the differences in the

observational-space coordinates between Q and P are denoted by

dr = xr -r (11)dx= _ x

which Is essentially equation (3). The position vector belonging to Q can be

freely parallel-transported to P, In which case (11) is a tensor equation at

P and dxr is a tensor at P. The geometrical object described by dxr is

symbolized in Fig. I by the vector dx. As another possibility, both position

vectors can be freely parallel-transported to P, in which case (11) is a tensor

equation at P and dxr is a tensor at P. In terms of Fig. 1, the geometrical

object described by this tensor can be Imagined as a vector of the same

magnitude and orientation as the vector dx already depicted, but drawn from P.

The latter possibility is particularly useful. It results in three tensor

equations at P, namely (9), (10), and (11), yielding

dxr =x + dxr, (12)

rwhich is again a tensor equation at P. Since the numerical values x are given
r

(they represent the actual observations), and the numerical values of x are0
a ~ r%fixed as a function of the fixed coordinates uG the tensor dx Is known from

(10) as a part of the geometrical setup. However, the numerical values of xr

are unknown (they represent the adjusted observations), and so are the values of
an -r Onteoherad

Ax and dx . On the other hand, Ax can be expressed as a function of

the coordinate differences du in (8). Since these differences are linked to

the position of the variable point P, and since the tensor dxr is also

linked to the position of P, it follows that a variety of realistic criteria
-rapertaining to dx could lead to the determination of du and thus to the

resolution of the entire setup.

7 %
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this choice appealing geometrically for its simplicity and objectivity, but it

represents at the same time the desired least-squares (L.S.) solution. Since
the residual vector V from adjustment calculus corresponds to -dxr, and the

adjustment weight matrix P corresponds to gsr' the familiar L.S. quadratic form,

V TPV=minimum, corresponds to

dxagsrdXr = ds2 = minimum.

where ds is the length of the vector dx. But the minimum-length criterion

for dx means that this vector must be orthogonal to the model surface. In

accordance with most practical cases, we assume that the small neighborhood of P

contains only one model-surface point satisfying the orthogonality requirement,

and that the latter entails a minimum, rather than a maximum, length ds.

A situation of this kind is reflected in the top portion of Fig. I, indicating

that one is concerned with the point P and not with Z.

2.2 Design Tensor

We begin with the system of equations (1), interpreted in the Introduction

as the Gauss' form of a u-dimensional surface embedded in an n-dimensional flat

space. This surface has been called the model surface, and the surrounding

space has been called the observational space. With respect to a given surface

point P, an infinitesimal displacement along the surface can be described either

in the surface coordinates by the coordinate differences du a , a=l.2,...,u, or in

the space coordinates by the coordinate difference! dx' r, r=i,2_.n. The two

are related by the ordinary formula for total differentiation,

dx' r = (axr/aua)dua , (17)

where the partial derivatives are evaluated at P.

aAlthough the surface coordinate system Is in general curvilinear, du can

be regarded not only as a set of coordinate differences, but also as

contravariant components of a small vector. Such a dual role is explained by the

statement on page 5 of [Hotine, 1969]: "Over short distances, we can,

nevertheless, consider that the coordinate lines are straight in a curvilinear

system. By analogy with the Cartesian definition, we still can say that a small

change in coordinates... represents the... contravarlant components of a small

9



where 61 is the Kronecker delta, we can write

A r = axr/aup = Irj + JrJ + .

and thus confirm (14a).

In retracing the above derivation, we conclude that the dual role of dua

(and also of dx'r ) as a set of small coordinate differences and as a tensor at
the surface point P has likewise resulted in a dual role of Ar. Specifically,

a
as axr/aua it can be regarded as a set of partial derivatives relating the

r rspace and the surface coordinates at P. And as C a +j j +... it can bea aregarded as a mixed tensor at P, transforming like a space tensor in the

contravariant indices and like a surface tensor in the covariant indices.

Except for the higher-dimensionality of (14a), this equation has the same form

as the tensor equation 6.09 in [Hotine, 1969], although the latter was derived

by other means. The important property of (14a) in tensor form is that it is

based on the space and the surface components of the orthonormal vectors

t, j, ... at P, which, in geometrical interpretation, span the model plane.

These vectors are quite arbitrary, in the sense that any such set leads to the

same tensor A r . Due to its correspondence to the design matrix A in
a

adjustment calculus, which can be noticed upon comparing (7) and (7'), Ar is
a

called the design tensor.

2.3 Least-Squares Solution

Since the values of the coordinate differences du are small by

construction, a good approximation to the final solution dua can be obtained

through a linearized model at P. In the geometrical context, such a model

corresponds to (16) without the derivatives beyond the first order, i.e., to

dxr = Ar da + dx" (19)
a

where the notation dxr has been replaced by dx" r. In terms of Fig. I, the

vector dx remains unaltered, but the model surface is replaced by the model

plane. If the adjustment model were Indeed linear, Ar would be constantr  a
throughout the model plane due to a =0 In (14b). The model surface metric

tensor at P would be formed as

11



Upon comparing (21) and (22), we assert that the L.S. solution (22) of the

linear model (19) Is the projection of dx onto the model plane. In Fig. 1, the

projected vector PQ is denoted as (du). In terms of the given quantities, the

projected vector in covarlant components is

(du S- g dxr = ag + b + (22')

which is a tensor equation at P. The contravariant version of (22') is obtained

upon contracting the latter with a

(dua) = a Ag srdX (22")

This equation gives the result identical to (22). It expresses the L.S.

solution of the coordinate differences in the linearized model, as well as the

contravariant components of the projection of the vector dx onto the model

plane. Since the L.S. solution of the linearized model Is assumed to be close

to the final L.S. solution of the nonlinear model, the tensor (dua) in (22")

offers a good first approximation to the coordinate differences dua in the

nonlinear model.

In returning to the covariant components of the projected vector, we

rewrite the tensor equation (22') as

(dxr (23a)(duo) A d

A similar tensor equation can be formed at the variable point P, namely

(duo) = A gsrdx (23b)

In the special case where dx is orthogonal to the model surface, the projected

vector (du) is zero. The barred tensors on the right-hand side of (23b) can

be derived from their unbarred counterparts:

-S S s
A =A + dA + . (24a)

dA5  0 or du (24b)

and

dX r  dx r 
- Axr , (25a)

Axr  dx r d'x'r . (25b)

13
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how far we can carry the general development without applying a specific

criterion for the vector dx.

If the solution of the problem at hand should conform to the L.S.

criterion, dx must be orthogonal to the model surface as stated earlier. The

variable point P must then coincide with the point denoted P in Fig. 1.

Accordingly, the projection of dx on the model surface at P is zero, and

thus (du) on the left-hand sides of (23b), (26), and (27) is replaced by

zero. At this stage, (27) is contracted with a , yielding

dun = (duo) + a a bdA gs dxr - Pad'x'r + " . (28)

Ssr r

where

pr aA gs , (29a)

which is a tensor at P that may be called the projection operator (onto the

model plane). In terms of this tensor, (22") can be written as

(duo) = Padxr, (29b)
r

where (du) is the projection of dx onto the model plane. Of the other
S -rr

quantities in (28), dA is given by (24b), dx is given by (25a-d), d'x' Is

given by (25d) alone, and aal , the "inverse" of a p, follows from (20a,b). On

the other hand, the tensor dxr (corresponding to the observations via equationrs

5), the tensor g and thus its "inverse" gs (corresponding respectively to the

variance-covariance and the weight matrices of the observations), the design

tensor Ar (corresponding to the design matrix), and the sets of partial
a

derivatives Or ..... are known a priori.

All of the tensors in (28) except (du ) contain the desired coordinate

differences dua between the point P representing the L.S. solution and the

fixed point P. And as the preceding paragraph has demonstrated, with the

exception of the coordinate differences dua themselves, all of the quantities in

(28) are known, including the tensor (du a ) obtained as the solution to the

linearized model. The relation (28) thus repcesents u nonlinear equations in u

unknowns. Since the solution (dua) is a good initial approximation to the
a adesired values du , all of the sets du on the right-hand side could be replaced

by (duo) in what can be termed the first geometrical iteration. Subsequently,

the improved set dua computed as the left-hand side of (28) can be substituted

15



straightforward fashion as indicated by the dots. However, this Is not foreseen
a

as being necessary or desirable In practice, where the coordinates ua are0

usually close to their final values and the terms containing higher than second

powers of dua are completely negligible. The terms developed explicitly in this

study already go one order of refinement beyond the usual linearization.

In transcribing the complete iterative procedure in matrix notations

consistent with the above specifications, we begin by grouping the observations

in the (column) vector x, and grouping the observables associated with the

coordinates u a in the (column) vector x . This leads to the formation of the0 0

vector dx according to (5), namely

dx = x - x , (30a)
0

where each vector has the dimensions (nxl). The variance-covariance matrix of

observations is g, and their weight matrix is

g* :-g (30b)

where either matrix has the dimensions (nxn). The design matrix A of dimensions

(nxu) corresponds to Ar in (14a):
a

A - [axr/aua ] (30c)

where the brackets indicate grouping of elements, the contravarlant indices

identifying the rows and the covariant indices identifying the columns. The

partial derivatives of the elements in A are grouped in a three-dimensional

array (Wa/au), such that

1 2 u(aA/au) = [8A/au ],[aA/au ...... aA/au u ] , (30d)

where each pair of brackets defines a matrix of dimensions (nxu), and where

these u matrices are separated from each other by commas. The matrices in
a a

(30c,d) are evaluated with the set u =uo . All of the quantities in (30a-d)

are considered to be known a priori.

The starting values for the final L.S. solution du are obtained from the

linearized model associated with the above set u U In particular, one
0

computes successively:

7,%
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With all the quantities for the right-hand side of (28) available and

expressed in matrix notations, this equation Is transcribed as

du = (du) * adA g*dx - Pd'x' + ... (33)

The new du above is used for the right-hand side in the next iteration, which

begins with the computation of the updated values In (32a-e). In the first

geometrical Iteration, the "new" du is (du). When the elements of du no longer

change, or change by negligible amounts, the iterative process is terminated.

2.4 Complete Resolution

Upon completion of the iterative process, the final coordinate values

describing the desired L.S. point P are

u (P) = La + dua (34)

which follows from (8). The geometrical Iterations also yield, as a by-product,

the values of dx corresponding to the minus residuals:

dxr dxr AXr (35a)

where

Axr dx 'r + d'x' r + (35b)

Equations (35a,b) as well as the expressions for dx' r and d'x' have been
- r

presented in (25a d). The position vector x of the L.S. point. P follows

from (9) and (11) as

-r r r r -r
x =x + Ax ~x -dx .(36)

I-r
The values of x correspond to the adjusted observations.

In addition to the parametric solution, the L.S. adjustment process should

also yield the variance-covariance matrices of the adjusted parameters and

observations, and possibly of linear functions of the adjusted parameters. To

this we shall add the weight matrices of the adjusted parameters and

observations. Clearly, all these matrices could be computed by forming tile

matrix of normal equations corresponding to the point P and inverting it.

However, in a consistent effort to avoid any inversion beyond the solution of

19



In expanding aa $ In the Taylor series, we take advantage of the result just

derived and of the basic equation (20b), rewritten as

aar a = 45a a

Upon differentiating the latter with respect to uT, the right-hand side becomes

zero. The contraction of the resulting equation with a produces

aaau = -a n (aa '/uT) a 

and thus

daam (aa 1/aur)dur= aauda a '
/L8

which is symmetric In the Indices a and P, as Is confirmed upon using the I
symmetry in da . If we differentiate aa-/auT with respect to u , and

contract the new equation with du du , we obtain

d'a a mt = (1/2)(a 
2 aa /auau6u)du

T du 6

=- aapd,a a so _ (1/2)(S + S$a)

where
~!

S =a da da S

The second equality above is the consequence of the formula giving da , and of

the symmetry in aag as well as in da/6 .

In collecting the results, we write the final outcome as

am~ am
a aa  Aa A , (38a)

,a$ da a + d'a a + , (38b)

0 apda a  = -a /da/a , (38c)

d'a -a'd'a #6 - Sa  , (38d)

am atp ES a da da , (3Re

all of which are symmetric in a and A. Upon considering (37b), equations

(38b e) could be replaced by a more concise expression:

2 1,%
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r sr =  r sr (43)

where the second equality is again due to the constant gsr' and gr' Is given

above by (42). As a matter of interest, one can form a quantity similar to

Ar in (39), and associate It with linear, or linearized, functions of the

adjusted parameters. In this case, all the quantities in (39) except aa

would be attributed the symbol ~
. The resulting tensor at P, called the

necessary associated metric tensor in the functional space, would represent the

variance-covariance matrix of these functions. However, the weight matrix of

such functions could not be expressed in analogy to (42) because the metric

tensor in the functional space is unknown.

The key formulas derived in this section will now be transcribed in matrix

notations in accordance with the convention introduced earlier. In grouping the

u adjusted parameters In the (column) vector u, one can transcribe (34) as

u = u0 + du (44)

The minus residual vector follows from (35a,b) as

dx = dx - Ax (45a)

where

Ax = dx' + d'x' + ... (45b)

Equations (45a,b) as well as the expressions for dx' and d'x' have already

appeared in (32b-e). With regard to the adjusted observations, (36) gives

x = x + Ax = x - dx . (46)

The weight matrix of the adjusted parameters, a*, follows from (37a--e):

a* = a* + Aa* , (47a)

Aa*= da* + d'a* , (47b)

T
da* = N * N (47c)

N = A Tg*dA , (47d)

d'a* = dA Tg*dA (47e)

23 .



Finally, the weight matrix of the adjusted observations is transcribed from

(42) as

g g*gfg* ( (52)

where g' is given by (49). For the weight matrix of the residuals, from (43)

we have

g*" g* -g' , (53)

with g*' given above by (52). The weight matrix of functions of the adjusted

parameters cannot be computed in analogy to (52) because the weight matrix in

the "functional space" is unknown.

As a matter of interest, we present a formula serving for the verification

of the final L.S. outcome. This relation has been encountered in tensor form as

a by-product of the geometrical development in Section 2.3. In particular,

equation (23b) and the statement Immediately following it have established that

if the vector dx is orthogonal to the model surface, the vector (du) is

zero. But this occurs precisely when the variable point P mentioned prior to

(23b) becomes the desired L.S. point P. Accordingly, upon the convergence of

the L.S. process, it must hold true that

A g* dx = 0 ,

which is the matrix form of (23b) with (du )=O.
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du Implicated in the second, third, and further terms on the right-hand side is

(du). The quantities computed with this vector will be symbolized here by

parentheses as well. Thus, we write

du (du) + a(dAT)g*(dx) - aATg*(d'x ') + (57)

where

(dA) = {aA/au)(du) , (58a)

(dx) = dx - (dx') - (d'x') - .,. , (58b)

(dx') = A(du) , (58c)

(d'x') = (dA)(du)/2 (58d)

Equation (58a) stems from (32a), and equations (58b-d) stem from (32b-e), with

the parentheses introduced in accordance with the above convention.

We now turn our attention to the first adjustment iteration and compare the

result with that produced by the first geometrical iteration. In analogy to

(54). the outcome of the first adjustment Iteration Is represented by

(du) A T g(dx (59)lu (1)  = a(o)A(0 ) (0

where the subscript (0) on the right-hand side indicates that the pertinent

quantities are associated with the point P0 generated in the zero-th iteration.

To establish a theoretical link with the geometrical approach, we express these

quantities in terms of their counterparts at P via the Taylor series expansion,

using the coordinate differences (du) relating P0 to P:

a (0) - a + (da) + (60a)

A = A + (WA) (60b)
(0)

dx dx - (dx') (d'x') . (dx) (60u)

(0) 0

The parentheses serve the same purpose as In the previous paragraph. The first

equality in (60c) is essentially (25a,b), where the variable point P is takn.

as the current point P0. The second equality in (60c) stems from (58b).

27
A.



-<

3.2 Second and Further Iterations

We now return to the formula (56) and apply it to the second geometrical

iteration. In this case, du on the left-hand side is written as du(2 ) , while du

on the right-hand side is du(I). However, due to (64), du on the right-hand

side is replaced by

(du) + (du) = [dul (66)

Upon symbolizing the quantities computed with [du] by brackets, in analogy to

(57) and (58a-d) we have

du(2) (du) + a[dA Ig*[dxJ - aA g* [d'x' ] + .... (67)

where

[dA] = (aA/au)[du] , (68a)

[dx] = dx - [dx'] [d'x'] - ... , (68b)

(dx'] = A[du] , (68c)

[d'x'] = [dA][du]/2 . (68d)

With regard to the second adjustment iteration, in analogy to (59) we write
T

(du)(2) = a(1)A(1)g*dx(1)  (69)

where the subscript (1) indicates the quantities associated with the point P1

generated in the first iteration. Again, these quantities are expressed via the

Taylor series expansion at P, this time upon using the coordinate differences

(du)*(du)(1 ) relating P1 to P according to (65), i.e., using [dul from (66):

a(,) = a + [da] . .... (70a)

A = A + [dA] + (70b)

dx dx - [dx'] - [d'x'] - ... = [dx] (70c)

The first equality in (70c) again corresponds to (25a,b), this time with the

variable point P taken as PI' while the second equality stems from (68b).
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The second adjustment Iteration generates the point P2' whose model-surface

coordinates are

u(P 2) = u(P1) + (du)(2)

or, upon considering (65),

u(P 2) - u(P) + (du) + (du) (1) + (du) (2) (75)

On the other hand, the second geometrical iteration gives rise to the point

whose model-surface coordinates are u(P)+du However, due to (74') we have
(2) -

u(P) + du( 2 ) - u(P) 4 (du) 1 (du) (1) (du) (2)

revealing that the second geometrical and adjustment iterations lead essentially
to the same point P2'

In proceeding in the same fashion, we would find for the third iteration:

[I ( {da)a*J[(du) (1)+ (du) (2) + (du)() du(3) (du) (76)

Here (da) Is a function of (du), such that

(du) + (dU)( 1 ) + (du)( 2 ) - (du)

which represents the coordinate differences between P and P. Again, if the
2

magnitude of (du) drops sinificantly vis-avis (du) the iterative

process has already converged. Otherwise the terms with {da) on the left hand

side of (76) (an be disregarded, yielding -

(dui) ( (du) (2) (du) - du (du) (76')

The third adjustment Iteration generates the point P3' whose model surface

coordinates are

u(P3) u(P) + (du) + (du)(1 ) + (du)( 2 ) + (du)( 3 ) (77)

On the other hand, the third geometrical Iteration gives rise to the point with

the model stirface coordinates

U(P) d (i (P) (dII) * (du) () d )(du) ()

where (76' ) has heeni taken Into account . But this meanis that the thi'd

geometrical and adjustment iterations also lead essfentially to the same poilil.
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4. CONCLUSIONS

The isomorphism between a nonlinear adjustment model with n observations

and u parameters on one hand, and a u-dimensional model surface embedded in an

n--dimensional (flat) observational space on the other, has been described in the

Introduction. To avoid unnecessary repetitions, it is only mentioned that in

the geometrical context, the observations correspond to the observational space

coordinates of the point called Q and the parameters correspond to the model

surface coordinates of the point called P. The latter can be perceived as a

result of mapping of Q onto the model surface according to a certain criterion.

The isomorphic geometrical setup has been developed in Chapter 2 by meanis

of tensor structure and notations. Crucial to this development are three

geometrical notions:

1) The fundamental tensors grs and gsr are constant throughout the

observational space. In the adjustment context, these tensors correspond

respectively to the variance-covariance and the weight matrices of observations.

a r
2) The quantities such as du and dx are regarded not only as sets of

model-surface and observational-space coordinate differences, respectively, but

also as contravariant components of small vectors (geometrical objects). In the

adjustment context, the components dua correspond to the adjusted parameters

referring to the "Initial point" P, where the model is expanded In the Taylor

series, and the components dx r 'orrespond to the observations referring to 1.

3) The simplest and the most objective mapping of Q onto the model surfac

is the one where the distance from P to Q is a minimum, in which case the

small vector PQ, denoted dx, is orthogonal to the model surface. Since, in

the adjustment context, the length square of dx corresponds to the standard

quadratic form vTpv, the orthogonality condition characterizes the least squares 

(L.S.) criterion, and, as such, is adhered to throughout this study.

The primary objective in the geometrical resolution of a nonlinear model is

the determination of duG, the coordinate differences between the l,.S. point p

and the initial point P. An essential stepping stone in this task, accomplished

in Chapter 2, is the determination of (du) which represents the I,-S. solut ion

of the corresponding linearized model. In the latter, the role of the model

surface is substituted for by the model plane, ie.. a u dimensional plane,
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such vectors are replaced by the new result, etc. However, the term (du) on the

right-hand side is fixed throughout. When the results no longer change, or

change by insignificant amounts, the convergence has been achieved.

In using the above algorithm, one can compute the value of the L.S.

quadratic form In every Iteration, corresponding to the length square of the

vector PQ. The latter is given ia matrix notations as dxTg*dx. This

computation is virtually effortless because the product g*dx must be evaluated

in any event as a part of the Iterative process. The knowledge of the L.S.

quadratic form at every step is especially useful if the possibility exists that

the solution could converge to a maximum rather than to a minimum. Since the

current algorithm Is based on the orthogonality condition, it is unable to

distinguish between the two extremes in the case where both occur within a small

neighborhood of P. The computation of the L.S. quadratic form can quickly

discern such a difficulty, which can then be rectified upon choosing a different

initial point P.

A comparison between the new "geometrical iterations" and the standard

"adjustment iterations" has been carried out in Chapter 3 and illustrated In the

Appendix. It has been shown that the two processes converge at almost exactly

the same pace, generating nearly identical model-surface points at every step

beyond the common zero-th iteration. This similarity in outcome occurs in spite

of a significant operational disparity. Whereas each adjustment iteration

involves a numerical reformulation of the linearized model, including the

inversion of the matrix of normal equations, the geometrical iterations keep the

quantities which are independent of the solution fixed. The benefit of the

geometrical approach thus becomes clearer. Unlike the standard procedure, this

approach does not benefit from a fresh, albeit expensive, start at every step,

yet It produces the same result In the same number of iterations.
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The actual observations of xr(ua ), grouped in the column vector x, are

stipulated to be

- 1.00 1
x = i0.22 (A.4)

L8.32]

The initial point P Is described by the column vector u The latter contains

the model-surface coordinates corresponding to an initial set of parameters:

u° L.29 (A.5)

In the observational-space coordinates, P is described by the column vector x

obtained through (A.la-c) with the values of u and u2 from (A.5):

V1.191
x °  = 1.29 (A.6)

L8. 0925]

The basic adjustment setup consists of dx, g*, A, and (aA/au), defined

in (30a--d). The values in dx follow from (A.4) and (A.6), namely

-0.19

dx = x -x -0107 (A.7)
0 2275 :

According to an earlier statement, g and g* are given by ,,

g = g* I (A.8)

Upon substituting the values from (A.5) Into (A.2), the design matrix associated

with P becomes

1 0

A 0 1 (A. 9)

1.98 10.72

The array (aA/au) is constant, and has already been presented in (A.3a c).
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If the model-surface coordinates (A.11) are utilized also in (A.2), the design

matrix becomes

MAnew) = 1 (A.13)

1.9 96 6 6 18  10.8028834

In (A.12) and (A.13), the symbol (new) is used in lieu of (0) as it appeared

e.g. in equation (59).

In paralleling (A.10a--c), one computes the pertinent matrices in the first

adjustment iteration:

B 4.9866584 21.5697048]
a*(new) j

21.5697048 117.7022895

0.9672389 -0.1772528
a(new) =1 a0° 1772528  0.0409787

F 0.9672389 -0.1772528 0.0164079
P(new) =

S0.1772528 0.0409787 0.0887746J

The solution vector in this iteration is denoted (du)(l) in agreement with the

notation in Chapter 3. Similar to (A.lOd), but with P(new) and dx(new)

replacing P and dx, this vector is computed as

r0.00013541

(du)(1) (A.14)
LO.OOOOOO6j

The updated point P in the first adjustment iteration is denoted P again in

agreement with Chapter 3. Its model-surface coordinates are obtained by adding -

(A.14) to (A.11):

11.19962607
u(P I 11.3000711 ! (A.15)

The second adjustment iteration proceeds in analogy to the preceding, two

paragraphs, except that It Is based on (A.15) instead of (A.l1). The final

results paralleling (A.14) and (A.15) are

Ile
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where the array (8A/au), the matrix A, and the vector dx, presented

respectively in (A.3a-c), (A.9), and (A.7), are fixed. Since the current

adjustment mode] is quadratic, the dots in (A.20) and (A.21d) can be discarded.

In the first geometrical Iteration, du in (A.21a-c) is replaced by (du)

from (A.10d). The indicated operations result in

0 0

dA 0 0

0.0 16 6 6 18  0.0828834

[00094906 0 0.1994906,

dx' = 0.0100705 I, d'x' = 0 I dx -1.0800705,

01267471] L.0004964 01002565

The utilization of the new quantities dA, d'x', and dx in (A.20) yields the

solution in the first geometrical Iteration:

du[(]) 06 I6 . (A.22)

This result gives rise to a point described by the model-surface coordmn tes

u + du ( 1.992L I (A.23)Uo 1 .300071 4

where u has been listed In (A.5). Upon consulting (A.15), the new point iso

seen to be nearly identical to P1 generated in the first adjustment iteration.

The second geometrical Iteration follows the procedure just described,

except that du In (A.21a-c) is now replaced by du( 1 ). The solution is

du I0, (A.24)
(2) L0.0 100544

which, when added to u In (A.5), gives rise to another point, whose model

surface coordinates are

1.1997142]

It + du(2 )  1 (A.25)
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A.4 AdJustment Results and Verifications

In using (A.28) in (A.2ta-e), one obtains

0 01
dA 0 0 ;(A.30)

0 .0 2  0.08

[0.011 0 0.201
dx' 0.01 d'x' [ dx 1

0.127 0.0005 10

The column vector dx represents the minus residuals. The final L.S. quadratic

form is

dx g*dx = 1.2164

Although not listed, this quadratic form has been computed throughout the

iterative process, and has been noted to converge to Its minimum value presented

above. The adjusted parameters are given by (A.29) as

u = [1.20 (A.3)
130

while the adjusted observations follow from (46) as

x = 1.20

x 1.30 (A.32)

L8 .22

Equation (A.32) is confirmed by the direct evaluation of (A.la-c) with the

values of u and u2 from (A.31).

In adding dA from (A.30) to A given by (A.9), one obtains the design matrix

at the L.S. point P:

0

A = [0 1 (A.33)

10.8J

This outcome is also established directly upon utilizing the values of 1 and u

from (A.31) in (A.2). A useful verification is offered by
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